Making grad school work for STEM students

Your ads will be inserted here by

Easy Plugin for AdSense.

Please go to the plugin admin page to
Paste your ad code OR
Suppress this ad slot.

How many reports does it take to change U.S. graduate education?

Answer: anywhere from one to 20. But the current system must want to change.

The training of graduate students in science is no laughing matter. But the cascade of reports issued on the topic over the past quarter-century has become something of an inside joke among those who care about graduate education in science, technology, engineering, and math (STEM) fields. So, when a committee of the National Academies of Sciences, Engineering, and Medicine (NASEM) this week issued a report on “revitalizing” graduate STEM education that referenced 19 related studies, its chairperson wasn’t surprised.

“The first thing people ask me is, ‘So what’s new?’” says Alan Leshner, CEO emeritus of AAAS in Washington, D.C., (which publishes ScienceInsider). His answer, in a phrase, is the call for a “student-centered” education.

“The current system works well for the PIs [principal investigators], institutions, and federal agencies that get relatively cheap labor and churn out lots of papers in top journals,” Leshner asserts. “But it doesn’t work well for students, and for many employers.”

Your ads will be inserted here by

Easy Plugin for AdSense.

Please go to the plugin admin page to
Paste your ad code OR
Suppress this ad slot.

What’s needed, according to the report, is a greater focus on mentoring and high-quality teaching. Doing so, it suggests, would also address many other chronic problems—including inadequate preparation for careers outside academia, a lack of diversity, and overspecialization—that previous reports have cited.

A job too far

The misalignment between the career path that many faculty expect their students to follow, and where those students actually wind up, is a major theme of the new report, which is an update of a 1995 NASEM report on “reshaping” graduate education. The tellingly similar titles suggest the problem is long-standing.

Most professors erroneously assume their job “is to produce little clones of themselves,” Leshner says. Yet fewer than 40% of the country’s STEM Ph.D.s actually work in academia, the report notes, and fewer than half of that group become independent investigators like their mentors.

That mismatch has several unintended consequences, the report notes. It can push some students into unwanted postdoctoral positions as they sort out career options and cause others to abandon science altogether.

But although the problem is serious, Leshner says any changes should be “evolutionary, not revolutionary.” Students still need to learn how to design and carry out research and to communicate the results to a broad audience. A combination of workshops, internships, and networking opportunities that expose students to career opportunities outside the lab, he adds, should “supplement, not supplant” the time needed to acquire what the report calls “core competencies.”

Panelist Suzanne Ortega, president of the Washington, D.C.–based Council of Graduate Schools (CGS), explains what that means in practice. Academic tenure and promotion decisions now rely largely on research productivity, in particular, a faculty member’s ability to garner competitive grants to fund research that will generate publications in prestigious journals. “I’ve been on a lot of those committees,” says Ortega, a sociologist and former provost and graduate dean at several universities, “and I’ve never seen one that asked about innovations in mentoring or the quality of that mentoring as measured by students’ satisfaction.”

Leave a Reply

Your email address will not be published. Required fields are marked *